
LD - F1

Introduction
The Sportradar F1 Live data feed is the best way to secure low-latency real-time data from F1 races.
It gives you access to leaderboard updates, timing data, information about pit-stops and much more
through a gRPC event stream.

Basic usage

This document describes how you can connect to the feed and receive events. It's encouraged to
follow the quick start guide and to use the replay functionality in the integration process. This ensures
that you'll develop a robust solution in addition to making it easy to test your integration. In this
document you will also find basic information about the F1 sport to ease developer understanding of
the feed. Triggers for each event in addition to detailed descriptions are also outlined in this
document. Finally this document contains a section of code-snippets to make it easy to get started.
You should be able to start your first replay in less than one hour after you have secured your SSO
token and booked your first replayable stage. It's that easy.

Sportradar F1 live data feed

This F1 Live Data feed is delivered as a gRPC service. That makes it fast, reliable and easy to work
with in a broad range of languages. The Code Snippets section serves as an example in Java.

gRPC

gRPC is a high-performance, open-source universal RPC framework where you use protocol buffers
to describe your service. From these files you can automatically create client stubs that work in a
variety of languages and platforms. It allows the client to call methods directly on the server
application on a different machine as it was a local object. On the client side you use a automatically
generated stub (aka client) to call methods on the server.

gRPC serializes the data to minimize data transfer and ensure fast communication. The client stubs
convert this into objects you can easily work with in your favorite language.

Visit to learn more about gRPChttps://grpc.github.io/

Help

If you have any questions or queries please do not hesitate to contact our support team: support@spo
rtradar.com

For any questions regarding commercial matters, please contact sales@sportradar.com

Access method
The F1 feed is provided as a gRPC service.

Host stream.ld.betradar.com

Port 443

Proto files https://github.com/sportradar/livedataf1

Access restrictions
To access the service you need a valid SSO token and to have booked F1 stages. The token is sent
with each request as gRPC metadata - "Authorization". A java sample of how to do this is shown in
the Code Samples section at the bottom of this document.

Tokens can be generated here: https://ufadmin.betradar.com/

https://www.betradar.com/
https://grpc.github.io/
mailto:support@sportradar.com
mailto:support@sportradar.com
mailto:sales@sportradar.com
http://stream.ld.betradar.com
https://github.com/sportradar/livedataf1
https://ufadmin.betradar.com/

Quick Start
Before you can start you need a SportRadar SSO token and you need to book one or more stages.

The easiest way to get started is to follow one of the code samples at the end of this documentation.

Testing gRPC

For quickly testing gRPC there are several tools you can use. Take a look at the extensive list
provided here: https://github.com/grpc-ecosystem/awesome-grpc#tools-cli

Example gRPC client tools are gRPCurl and BloomRPC.

Sample call to stream events fro a given stageId.

gRPCurl sample

grpcurl -proto services.proto -d ‘{“stageId”:“<StageId>"}’ -H
‘Authorization: <token-from-sportradar-sso>’ stream.ld.betradar.com:443
sportradar.ldi.f1.services.v1.EventStream/StreamEvents

Sample call to replay a given stage with 2x normal speed. StageId used here is from the Belgian GP
Race 2019.

gRPCurl sample - ReplayStreamEvents

grpcurl -proto services.proto -d '{"stageId":"sr:stage:430547",
"speedFactor": 2}' -H 'Authorization: <token-from-sportradar-sso>'
stream.ld.betradar.com:443 sportradar.ldi.f1.services.v1.EventStream
/ReplayStreamEvents

Sample call to get a snapshot of the latest stage of a given stage. StageId used here is from the
Belgian GP Race 2019.

gRPCurl sample - GetStageSnapshot

grpcurl -proto services.proto -d '{"stageId":"sr:stage:430547"}' -H
'Authorization: <token-from-sportradar-sso>' stream.ld.betradar.com:443
sportradar.ldi.f1.services.v1.StageInfo/GetStageSnapshot

Sample call to get details about a specific stage. StageId used here is from the Belgian GP Race
2019.

gRPCurl sample - GetStageDetails

grpcurl -proto stage-discovery.proto -d '{"stageId":"sr:stage:430547"}' -
H 'Authorization: <token-from-sportradar-sso>' stream.ld.betradar.com:
443 sportradar.ldi.stage_discovery.v1.StageDiscovery/GetStageDetails

https://github.com/grpc-ecosystem/awesome-grpc#tools-cli

Sample call to discover stages with GetStageTimetable. Using the timerange around the Belgian GP
Race from 2019 to get that stageId. Note that when using timestamps in gRPCurl you need to use a
RFC string as shown in the example below. In the internals of gRPC this will be transformed into a
google.protobuf.Timestamp type consisting of seconds and nanos.

gRPCurl sample - GetStageTimetable

grpcurl -proto stage-discovery.proto -d '{"sportId":"sr:sport:40",
"from": "2019-08-30T00:00:00Z", "to": "2019-09-02T00:00:00Z"}' -H
'Authorization: <token-from-sportradar-sso>' stream.ld.betradar.com:443
sportradar.ldi.stage_discovery.v1.StageDiscovery/GetStageTimetable

Discover stages

The first thing you need to do is to set up your project with the proto files and to secure an SSO token.
Once you have that you are able to call the RPC GetStageTimetable. That procedure will return stage

for the requested sport and time-frame. For now request stages with the sport id s you have booked
 and a time range around the 2019 Belgian GP; .sr:sport:40 30 August - 01 September 2019

From this you'll get a list of available stages that you have booked. If no stages are returned please
make sure that you have booked some stages and that they exist in the requested time-range. If
needed, expand the time-range.

This response will be in a protocol buffer format. Properties are typed and easy to extract and work
with. Most languages make it easy to convert protocol-buffers to json, for readability reasons we

 - to make it possible to share them here.convert the sample responses to json

To replay an event we need one stage where isInProgress is false. Take a note of that stageId and
proceed to the next section; Replay Events.

Sample GetStageTimetable response converted to JSON

{
 "stages": [
 {
 "stageId": "<stage 1>",
 "startEvents": {
 "seconds": 1582813200,
 "nanos": 0
 },
 "stageStart": {
 "seconds": 1582813800,
 "nanos": 0
 },
 "stageEnd": {
 "seconds": 1582821000,
 "nanos": 0
 },
 "name": "Race",
 "description": "Sample race 1",
 "sportId": "40",
 "categoryId": "36",
 "categoryName": "Formula 1",
 "parentStageName": "Grosser Preis von Deutschland 2019",
 "stageType": "STAGE_TYPE_RACE",
 "infoTypes": [
 {
 "infoid": "<stage 1>:status",
 "name": "Status",
 "value": "Finished",
 "determinate": "status"
 },
],
 "isInProgress": false
 },
 {
 "stageId": "<stage 2>",
 "startEvents": {

 "seconds": 1582892409,
 "nanos": 128000000
 },
 "stageStart": {
 "seconds": 1582893009,
 "nanos": 128000000
 },
 "stageEnd": {
 "seconds": 1582900209,
 "nanos": 128000000
 },
 "name": "Race",
 "description": "Sample race 2",
 "sportId": "40",
 "categoryId": "36",
 "categoryName": "Formula 1",
 "parentStageName": "Grand Prix de France 2019",
 "stageType": "STAGE_TYPE_RACE",
 "infoTypes": [

],
 "isInProgress": false
 },
 {
 "stageId": "<stage 3>",
 "startEvents": {
 "seconds": 1583329822,
 "nanos": 738000000
 },
 "stageStart": {
 "seconds": 1583330422,
 "nanos": 738000000
 },
 "stageEnd": {
 "seconds": 1583337622,
 "nanos": 738000000
 },
 "name": "Race",
 "description": "Sample race 3",
 "sportId": "40",
 "categoryId": "36",
 "categoryName": "Formula 1",
 "parentStageName": "Australian Grand Prix 2019",
 "stageType": "STAGE_TYPE_RACE",
 "infoTypes": [
 {
 "infoid": "<stage 3>:laps",
 "name": "Rounds",
 "value": "58",
 "determinate": "laps"
 }
],
 "isInProgress": true
 }
]
}

Replay Events

We have built this service to make it easy for developers to integrate and test their solution. This
means that you can start a replay of any historic stage you have booked when you want. You can
replay at your desired speed and you can restart or stop the replay when it suits you.

To get started look up the RPC ReplayStreamEvents. The response from this call will be a stream in
exactly the same format as you should expect for live stages, however this is tailor made for
integration testing. For that reason this procedure has two differences you need to be aware of.

1.

2.

It will disconnect you at random time interval - this is to ensure that you implement a
reconnection strategy and that you are able to test that.
It mimics real timing for previous stages and allows you to speed up the race with a "fast-
forward" parameter - "speedFactor". With this you can replay stages up to 10x the normal
speed.

Reconnection strategy

It is crucial that you implement a reconnection strategy from the start. This ensures that you are able
to reconnect if some unexpected issue should stop the stream of events. By keeping track of the last
event you received you can continue streaming from where you left off. This makes it easy to make
your implementation Highly Available and it ensures that you will have a reliable implementation.

When you connect the server will start streaming events from the beginning of the stage. All events
will be in the form of an EventResponse with a single EventWrapper property. The event wrapper
contains the id of the event (sequence id) and the event it self in addition to some other metadata. All
stages start with a StartOfStageEvent wrapped in the event wrapper that indicates that the data-
stream for this stage has started. When the stage is finalised you'll get an EndOfStageEvent wrapped
in the event wrapper, this indicates that there will be no more events and that you should close the
stream. If you don't close the stream the sever will do that at the indicated time. Normally 5 minutes
after the EndOfStageEvent is sent.

Event frequency

During a Formula 1 Race stage you should expect to see somewhere around 50-70k events in the
span of 2.5hours. Around 8 events/second on average and around 30 events/second peak. Make
sure your setup is capable of handling this load.

You will receive a stream of EventResponse. Each of them contains an EventWrapper with an event.
These events need to be unpacked/de-serialized. Before you unpack the event it will look like this if
converted to JSON.

Sample EventResponse converted to JSON

{
 "eventWrapper": {
 "id": 615980,
 "rawEventUuid": "",
 "stageId": "<stage 1>",
 "loggedAt": {
 "seconds": 1579872820,
 "nanos": 0
 },
 "eventType": "WeatherUpdateEvent",
 "event": {
 "typeUrl": "type.googleapis.com/sportradar.ldi.f1.events.v1.
WeatherUpdateEvent",
 "value":
"CWZmZmZmJlZAEAEZAAAAAAAANUAhmpmZmZn5jkApAAAAAAAAOkAwqAE="
 }
 }
}

When you unpack the event, in this case a WeatherUpdateEvent, the event will look like this when
you convert it to JSON. Take a look at the Code samples section at the end of this document to see
how you can do this in Java.

1.

2.

3.

4.

Sample WeatherUpdateEvent converted to JSON

{
 "humidity": 88.2,
 "rainfall": true,
 "airTemp": 21,
 "pressure": 991,
 "trackTemp": 26,
 "windDirection": 0,
 "windSpeed": 1.3
}

Outline flow

The illustration below shows how you should connect and stream events in four different scenarios:

First: Discover a stage/race by calling GetStageTimetable and getting a list of available stages in a
StageTimetableResponse.

Replay a recent race. In the timetable response from the first stage you might find a stage
that was done 14 days ago. You can replay this when you want by calling
ReplayStreamEvents. From that you'll get a stream of EventResponse.
Get a recent stage. Instead of replaying a previous stage you can also fetch the data as fast
as possible. To do this you can call StreamEvents for that stageId with afterSequenceId 0.
That will stream all events from the beginning of the stage as fast as your network
connection allows. You can also use StreamEvents with afterSequenceId: 0 for a live stage,
in this case you'll get all previous events as fast as possible until you catch up to the most
recent one, after you catch up you'll receive new events as soon as they are created.
Stream an ongoing race. First get a snapshot of the ongoing stage to get the current state of
the stage. In that snapshot you'll get the id of the last event used to generate the snapshot.
After you have received the snapshot, start streaming events for the stage with
StreamEvents with the afterSequenceId set to the event id from the snapshot. That way
you'll continue streaming from the point in time when the snapshot where created (snapshots
are created when you request them).
Upcoming stage. Connect with StreamEvents at the suggested startEvents time you got from
the StageTimetableResponse. If the stage has not started you'll get disconnected with a
NOT_FOUND error. If that happens, back-off for 10s and reconnect. Once the stage starts
you'll get a stream of EventResponse.

Service overview
The procedures are grouped in 3 services; StageDiscovery, EventStream and StageInfo.

StageDiscovery

StageDiscovery gives you an easy way to discover stages you You can either search have booked.
in a time range for a given sport, or you can look up details for a specific stage to get information
about when the stage starts and when we recommend to connect.

sportId

For Formula 1 you should always use the sportId sr:sport:40

Stage

A stage is the same as a sporting event. For Formula 1 this is a part of a Grand Prix. Each Grand Prix
consists of 5 stages; Practice 1, Practice 2, Practice 3, Qualifying and Race. For season start 2020
we offer live data from Race stages.

Stage

Propery Type Description Sample
value

stageId string The id of the stage. This is used when you want to stream events from a
specific stage.

sr:stage:
00001

startEvents google.
protobu
f.
Timesta
mp

The estimated time when we start streaming live data from this stage.
This is the time when you should connect.

Seconds and nanos since Unix epoch, that is the time 00:00:00 on UTC
1 January 1970, minus leap seconds

{
:seconds 1

582626479,

:nanos 385
000000

}

stageStart google.
protobu
f.
Timesta
mp

The official start time of the stage.

Note: F1 might start the stage slightly before or after this time, so be
sure to connect at the time indicated in startEvents property.

Seconds and nanos since Unix epoch, that is the time 00:00:00 on UTC
1 January 1970, minus leap seconds

{
:seconds 1

582626479,

:nanos 385
000000

}

stageEnd google.
protobu
f.
Timesta
mp

The official end time of the stage.

Duration for F1 Race stages are normally around 2 hours. The data-
stream lasts a bit longer than this, but normally not much. We will send
an EndOfStageEvent to let you know when the stage is done. At that
time you should disconnect from the stream.

Seconds and nanos since Unix epoch, that is the time 00:00:00 on UTC
1 January 1970, minus leap seconds

{
:seconds 1

582626479,

:nanos 385
000000

}

name string Name of the stage "Race"

description string Short description of the stage "Grosser
Preis von
Osterreich
2019
Race"

sportId string The Sportradar sport ID "sr:sport:
40"

categoryId string The Sportradar category ID "36"

categoryN
ame

string The Sportradar category name "Formula
1"

parentStag
eName

string The parent stage name. This will be the name of the Grand Prix. "Grosser
Preis von
Osterreich
2019"

stageType string The type of the stage. STAGE_TYPE_RACE, STAGE_TYPE_PRACTIC
E or STAGE_TYPE_QUALIFYING

"STAGE_T
YPE_RAC
E"

infoTypes repeate
d Stage
InfoType

[]

isInProgress boolean Indicates if the stage is in progress and are producing live data. This will
be set to true when we process the first event from the stage and set to
false after we have processed the last event.

true

GetStageDetails

GetStageDetails should be used when you know the stageId, but you want to know the start time for
the stage and the suggested connect time. As a response you will get one Stage message. It will
only return a Stage message in response if you have booked the stage.

GetStageTimetable

GetStageTimetable returns a list of stages in the given time frame . You can that you have booked
fetch data from previous stages or follow a live stage.

We recommend that you call GetStageTimetable at least once every day, but no more than once
every 5 minutes, with a time range of 24 hours. As a response you will get a list of stages you have
booked. Each stage will have a "startEvents" property of type google.protobuf.Timestamp. This
indicates the suggested connection time for this stage. At that time we will start sending live data for
that stage. You can connect to the stage up to ONE HOUR before the stage start time, however we
don't expect any events before the suggested connection time "startEvents". If you try to connect with
StreamEvents RPC before this time you will get an error. If you do; implement a 5-10 second back-off
and reconnect.

EventStream

The EventStream service has two procedures: StreamEvents and ReplayStreamEvents.
StreamEvents are used for live consumption of data, ReplayStreamEvents are used for integration
testing. They both return the same stream of EventResponse, however there are a couple of unique
features for ReplayEventStream that makes it suitable for integration testing.

Event streams

For this service you establish one connection and stream events for an individual stage. If you want to
consume multiple stages at the same time you have to create several connections.

Note that F1 only have one stage live at any given time. There should be no need to connect to
several stages at the same time.

ReplayStreamEvents replays a booked and completed stage with events timing mimicking the real
event timing of the stage. You can also request previous races from the EventStream rpc, however
this will not mimic the real timing of the stage, instead it will stream the data as fast as possible.

Reconnect

For both StreamEvents and ReplayStreamEvents it is crucial that you automatically reconnect if you
lose connection while the stage is ongoing.

You need to keep track of the id of the last event you received. When you reconnect you specify that
you want events with an id after the last one you received. This ensures that you don't lose any data if
you lose the connection.
Stream Timeout

Each streaming connection is allowed to live up to 6 hours. That ensures that idle connections don't
affect the availability of the service. In any case you are encouraged to close the stream when you
have received the EndOfStageEvent. That events also includes a deadline where we will close the
connection from the server side if you have not closed it already.

StreamEvents

This RPC streams all events for a stage as soon as they are available. For a stage that is in progress
this will be in real-time. For a completed stage this will be as fast as the network connection allows
since all the events are available at the time of the request.

Reconnect

We don't expect you to need to reconnect during a live stage, however you have to be prepared to do
so should it be needed. In the unlikely case of server crash or other unexpected issues you will be
disconnected. In this case you'll be able to reconnect to another server in milliseconds and you are
able to continue from where you lost connection without any data loss.

EventsRequest

Property Type Description Optional
/Mandatory

stageId string The stageId for the stage you want to stream events from Mandatory

eventTypes repeate
d string

Event type filter. Leave empty if you want to receive all event types.
Add event names to the list if you only want specific types of events.
E.g. ["SessionTimeEvent", "StageStatusEvent",
"WeatherUpdateEvent"]

StartOfStageEvent, EndOfStageEvent, EarlyBetStartEvent,
BetStartEvent, and BetStopEvent can not be filtered out. These 5
event types will always be sent no matter what events you specify in
the filter.

Mandatory -
defaults to []

afterSeque
nceId

int64 The id of the last event you received (found as "id" in EventWrapper
for the event). Set to -1 to receive only live events. Set to 0 to
receive all events from the beginning of the stage.

Mandatory -
defaults to 0

ReplayStreamEvents

ReplayStreamEvents is tailor made for testing and integration. It mimics a real stage by making sure
that the timing of the events match what you would have seen if you where connected to a live stage.
All the events sent are taken from real stages, and except from the date this is as close to streaming a
live stage as you can get. We are aware that you sometimes want to test things a bit faster than 1:1
speed. For that reason ReplayStreamEvents also have a "fast-forward" parameter, "speedFactor" that
allows you to play back the race in 1-10x normal speed. As with StreamEvents you can use the
afterSequenceId parameter in the request to start streaming from any given point in the stage. That
allows you to stop the replay at any point and start the replay back up again from the same place in
the stage when you are ready.

Since ReplayStreamEvents RPC is made for testing we have implemented a random disconnect on
the server side. This allows you to properly test your reconnection logic before you move into
production. The stream from StreamEvents and ReplayStreamEvents are exactly the same. So once
you are ready to move this into production you only have to change the RPC name from
ReplayStreamEvents to StreamEvents and use the EventsRequest parameter message instead of the
ReplayEventsRequest.

Reconnect

To ensure that you do implement a logic that handles reconnection the ReplayStreamEvents is built in
such a way that . It's made this way so that you can you will get disconnected at random intervals
test that your integration is able to handle situations like this. This RPC should be used for testing and
integration only, and for that reason this random disconnect will not affect live stages.

Make sure to read the Errors section to find the gRPC status codes that you should use to trigger your
reconnection logic.

ReplayEventsRequest

Property Type Description Optional
/Mandatory

stageId string The stageId for the stage you want to stream events from Mandatory

eventTypes repeate
d string

Event type filter. Leave empty if you want to receive all event types.
Add event names to the list if you only want specific types of events.
E.g. ["SessionTimeEvent", "StageStatusEvent",
"WeatherUpdateEvent"]

Mandatory -
defaults to []

afterSeque
nceId

int64 The id of the last event you received (found as "id" in EventWrapper
for the event). Set to -1 to receive only live events. Set to 0 to
receive all events from the beginning of the stage.

Mandatory -
defaults to 0

speedFactor int32 The speed of the replay. A value of 1 equals normal "real-time"
speed for the replay. A value of 5 equals 5x normal speed. Allowed
values are 1-10. Any other values will be interpreted as normal
speed: 1.

Mandatory -
defaults to 0

StreamCarPositionEvents

This RPC streams car position events for a stage in real time. Given the high frequency nature of this
stream, we allow for an extra request parameter 'periodMs' which specifies the time delay between
consecutive events in the response.

CarPositionEventsRequest

Property Type Description Optional
/Mandatory

stageId string The stageId for the stage you want to stream events from Mandatory

periodMs int32 Specify the time delay between the response messages in
milliseconds, e.g. if periodMs = 500,
the resolution will be of 2 messages per second. Minimum period is
20 ms, and the response will use a period
corrected to the next multiple of 20ms from the provided period
(e.g. is periodMs = 50ms, the response will consist of messages
every 60ms).

Mandatory -
defaults to 0

afterSeque
nceId

int64 The id of the last event you received (found as "id" in EventWrapper
for the event). Set to -1 to receive only live events.

Mandatory -
defaults to 0

StageInfo

StageInfo service has one procedure that allows you to get a snapshot of an ongoing race. This is
used to get the state of the race quickly, and then connecting to the stream to update the state.

GetStageSnapshot

Pass in a StageSnapshotRequest message as a parameter to the GetStageSnapshot procedure. In
response you'll get a StageSnapshotResponse that contains the most important information about the
current state of the race. The id of the most recent event used to build the snapshot will be included in
the response. Use this sequenceId to start streaming events to continue streaming from the state the
stage was in when this snapshot was created.

GetStateSnapshot and Replays

When you request a snapshot from a completed stage or during a replay you will get the current, real,
state of the stage. For completed stages this is the state after the stage was FINALISED.

StageSnapshotRequest

Property Type Description Optional/Mandatory

stageId string The stageId for the stage you want to stream events from Mandatory

StageSnapshotResponse

Property Type Description Optional
/Mandatory

raceLeader
boardEvent

or

qualifyingLe
aderboardE
vent

or

practiceLea
derboardEv
ent

sportradar.ldi.f1.events.
v1.
RaceLeaderboardEvent
sportradar.ldi.f1.events.
v1.
QualifyingLeaderboardE
vent
sportradar.ldi.f1.events.
v1.
PracticeLeaderboardEve
nt

The current leaderboard for the stage.

Leaderboards differ slightly for different stage
types. The correct leaderboard for the requested
stage is sent.

Mandatory

stageStatus
Event

sportradar.ldi.f1.events.
v1.StageStatusEvent

The most recent status of the stage. Mandatory -
defaults to
UNKNOWN

trackStatus
Event

sportradar.ldi.f1.events.
v1.TrackStatusEvent

The most recent track status. Mandatory -
defaults to
UNKNOWN

lapCountEv
ent

sportradar.ldi.f1.events.
v1.LapCountEvent

The most recent lap count. Mandatory

weatherUpd
ateEvent

sportradar.ldi.f1.events.
v1.WeatherUpdateEvent

The most recent weather status Mandatory

sequenceId int64 The sequenceId of the last event used to generate
this snapshot

Mandatory

startingPosi
tionEvent

sportradar.ldi.f1.events.
v1.StartingPositionEvent

The drivers starting position in this stage. Mandatory

earlyBetSta
rtEvent

or

betStartEve
nt

or

betStopEve
nt

sportradar.ldi.f1.services.
v1.EarlyBetStartEvent

sportradar.ldi.f1.services.
v1.BetStartEvent

portradar.ldi.f1.services.
v1.BetStopEvent

Current bet status Mandatory

feedQuality
Event

sportradar.ldi.f1.events.
v1.FeedQualityEvent

Current feed quality Mandatory

sessionTim
eEvent

sportradar.ldi.f1.events.
v1.SessionTimeEvent

Session time Mandatory

Sample response

Sample snapshot response converted to JSON

{
 "raceLeaderboardEvent": {
 "stageId": "<stageid>",
 "isPartialUpdate": false,
 "idealLapTime": "1:16.127",
 "items": [
 {
 "position": 1,
 "driverData": {
 "driverId": "41600",
 "racingNumber": 77,
 "numberOfTyres": 3,
 "position": 1,
 "lastLapTime": "1:18.325",
 "personalBestLapTime": "1:18.272",
 "personalBestLapNumber": "54",
 "pitStops": 4,

 "lapsCompleted": 64,
 "tyre": "SOFT",
 "isActive": false
 }
 },
 {
 "position": 2,
 "driverData": {
 "driverId": "39412",
 "racingNumber": 27,
 "numberOfTyres": 4,
 "position": 2,
 "lastLapTime": "1:29.853",
 "personalBestLapTime": "1:29.576",
 "personalBestLapNumber": "18",
 "pitStops": 3,
 "lapsCompleted": 64,
 "tyre": "HARD",
 "isActive": false
 }
 },
 // + more drivers
]
 },
 "stageStatusEvent": {
 "state": 5
 },
 "trackStatusEvent": {
 "trackStatus": 1,
 "message": "AllClear"
 },
 "lapCountEvent": {
 "totalracelaps": 64,
 "currentracelap": 64,
 "racelapsremaining": 0
 },
 "weatherUpdateEvent": {
 "humidity": 86.5,
 "rainfall": false,
 "airTemp": 21.9,
 "pressure": 992.3,
 "trackTemp": 26.8,
 "windDirection": 347,
 "windSpeed": 0.7
 },
 "sequenceId": 684439,
 "startingPosition": {
 "items": [
 {
 "position": 1,
 "driverData": {
 "driverId": "41600",
 "racingNumber": 77,
 "numberOfTyres": 0,
 "position": 1,
 "lastLapTime": "",
 "personalBestLapTime": "",
 "personalBestLapNumber": "",
 "pitStops": 0,
 "lapsCompleted": 0,
 "tyre": "WET",
 "isActive": false
 }
 },
 {
 "position": 2,
 "driverData": {
 "driverId": "39412",
 "racingNumber": 27,
 "numberOfTyres": 0,
 "position": 2,

 "lastLapTime": "",
 "personalBestLapTime": "",
 "personalBestLapNumber": "",
 "pitStops": 0,
 "lapsCompleted": 0,
 "tyre": "WET",
 "isActive": false
 }
 },
 // + more drivers
]
 },
 "betStartEvent":{
 reason: ""
 }
}

GetStageTimelineEvents

Return all Timeline events for the requested stage in the requested timeframe. These event are not
too frequent so it is possible to request all event types for a full race.

Allowed Timeline events types are:
StageStatusEvent, TrackStatusEvent, RaceControlEvent, LapCountEvent, FastestLapAchievedEvent,
FastestSpeedAchievedEvent,
PitLaneTimeEvent, FastestSectorTimeAchievedEvent, DriverOutEvent, DriverPitStopEvent,
DriverStoppedEvent,
Top3DriversEvent, OvertakeEvent, StartedRainingEvent

GetStageTimelineEventsRequest

Property Type Description Optional
/Mandatory

stageId string The stageId for the stage you want to stream
events from

Mandatory

eventTypes repeated string Mandatory

from google.protobuf.
Timestamp

Mandatory

to google.protobuf.
Timestamp

Mandatory

GetStageCarPositionEvents

Returns CarPositionEvents within the provided time range and with the provided delay between
timestamps.

The maximum allowed length of the provided time range is 1 minute (i.e. from + 1 minute > to).

GetStageCarPositionEventsRequest

Property Type Description Optional
/Mandatory

stageId string The stageId for the stage you want to stream events from Mandatory

from google.
protobuf.
Timestamp

Mandatory

to google.
protobuf.
Timestamp

Mandatory

periodMs int32 Specify the time delay between the response messages in
milliseconds, e.g. if periodMs = 500,
the resolution will be of 2 messages per second. Minimum
period is 20 ms, and the response will use a period
corrected to the next multiple of 20ms from the provided
period
(e.g. is periodMs = 50ms, the response will consist of
messages every 60ms).

Mandatory

GetTrackModelURLForStage

Returns a presigned S3 URL to download the csv track model for the stage. The csv model contains
the ENU for the points of the track, together with a 'LAYER' property indicating the part of the track.
The usage of this model is explained in DriverCarPosition section in the event reference.

TrackModelRequest

Property Type Description Optional/Mandatory

stageId string The stageId for the requested track Mandatory

Errors
Errors for the service follows the gRPC standard for status codes. https://github.com/grpc/grpc/blob
/master/doc/statuscodes.md

To the right in this table you can see a column named "Trigger reconnect". This indicates whether you
should trigger a reconnect or not if you get this error message.

https://github.com/grpc/grpc/blob/master/doc/statuscodes.md
https://github.com/grpc/grpc/blob/master/doc/statuscodes.md

Code Number Description Sample situation Trigger
reconnect

OK 0 Not an error. Successful
request.

NO

CANCE
LLED

1 The operation was cancelled NO

UNKNO
WN

2 Unknown error. Yes, 10-100ms
back-off

INVALI
D_ARG
UMENT

3 Malformed or invalid argument
(s).

When you try to call an RPC with
invalid arguments

NO

DEADLI
NE_EX
CEEDED

4 The deadline expired before
the operation could complete.

When you set a deadline for the
response from client side and you
don't get a response within the
deadline you set.

Yes, 10-100ms
back-off

NOT_F
OUND

5 The requested resource could
not be found.

When you try to call
StreamEvents or
ReplayStreamEvents for a stage
that has not started yet (data does
not exist)

If it's an
upcoming
stage, back off
for 10s and
reconnect

ALREA
DY_EXI
STS

6 Not used NO

PERMI
SSION_
DENIED

7 The authentication credentials
used for this operation is not
authorized to perform the
operation.

When you try to request data from
a stage that you have not booked.

NO

UNAUT
HENTIC
ATED

16 The request does not have
valid authentication
credentials for this operation

When you try to call an RPC with
missing or invalid SSO token.

NO

RESOU
RCE_E
XHAUS
TED

8 You have exceeded your
quota for concurrent stream
or requests

NO

FAILED
_PREC
ONDITI
ON

9 The operation was rejected
because the system is not in
a state required for the
operation's execution.

When you try to request a
snapshot from a stage that has
not started yet.

If it's an
upcoming
stage, back off
for 10s and
reconnect

ABORT
ED

10 The operation was aborted,
typically due to sequence
check failure or transaction
abort.

NO

OUT_O
F_RAN
GE

11 The operation attempted was
out of range

When you use an
afterSequenceId that is greater
than the max sequenceId for the
requested stage

NO

UNIMPL
EMENT
ED

12 Operation is not implemented NO

INTERN
AL

13 Serious internal error NO

UNAVAI
LABLE

14 Service unavailable YES, with a
back-off of 1s
or more

DATA_L
OSS

15 Unrecoverable data loss or
corruption

Data-loss over network or if you
have changed the protofiles

YES. with a
back-off of 1s
or more

Rate Limiting
We have a rate limiting server setup per service with the following refill rates:

Service Refill rate

StageInfo 50/sec

StageDiscovery 25/sec

EventStream 10/sec

All have a burst factor of 4, meaning that a client can temporally request up to 4 time the refill rate.
Blocked clients will receive an error code: UNAVAILABLE if rate limited.

Events
A reference document for the F1 events is found here: F1 Event Reference

Code samples
The following samples show how to consume from the service API in the Java programming
language. For examples in other languages, as well as in-depth info, please refer to https://grpc.io

./docs/

Preliminiaries

In the sections below we show how to build your integration code using Maven. Knowledge of Maven
is assumed.

Compiling protos

After you have acquired the files from Sportradar, put them in in your .proto src/main/proto/
project and include the following or similar in the and sections of your <dependencies> <build> po

 file. This will build Java artifacts for the protos and gRPC layer and add to m.xml target
./generated-sources/

https://confluence.sportradar.ag/display/LDP/F1+Event+Reference
https://grpc.io/docs/
https://grpc.io/docs/

...

<dependency>
 <groupId>javax.annotation</groupId>

javax.annotation-api <artifactId> </artifactId>
 <version>1.3.2</version>
</dependency>
<dependency>

org.xolstice.maven.plugins <groupId> </groupId>
protobuf-maven-plugin <artifactId> </artifactId>

0.6.1 <version> </version>
</dependency>

...

<build>
...

<extensions>
 <extension>
 os-maven-plugin<artifactId> </artifactId>
 kr.motd.maven<groupId> </groupId>
 1.6.2<version> </version>
 </extension>
</extensions>
...

<plugins>
<plugin>
 protobuf-maven-plugin<artifactId> </artifactId>
 <configuration>
 io.grpc:protoc-gen-grpc-java:1.26.0:exe:${os.<pluginArtifact>
detected.classifier}
 </pluginArtifact>
 grpc-java<pluginId> </pluginId>
 com.google.protobuf:protoc:3.11.2:exe:${os.<protocArtifact>
detected.classifier}
 </protocArtifact>
 </configuration>
 <executions>
 <execution>
 <goals>
 compile<goal> </goal>
 compile-custom<goal> </goal>
 </goals>
 </execution>
 </executions>
 org.xolstice.maven.plugins<groupId> </groupId>
 0.6.1<version> </version>
</plugin>

...

Importing gRPC

In order to import the necessary gRPC libraries, include the following dependency or similar in your po
 file.m.xml

<
dependency
>
 <groupId
io.grpc> </
groupId>
 <
artifactId
grpc-all>
</
artifactId
>
 <version
1.27.1> </
version>
</
dependency
>

Consuming events using a blocking call

The sample below shows how to make a blocking (in-thread) gRPC call to the F1 service.

package com.sportradar.livedata.integration.f1.service.snippets;

com.google.common.net.HttpHeaders. ;import static AUTHORIZATION

com.google.protobuf.Any;import
com.google.protobuf.InvalidProtocolBufferException;import
com.sportradar.livedata.integration.f1.services.v1.import

EventStreamGrpc;
com.sportradar.livedata.integration.f1.services.v1.ServiceProtos;import
io.grpc.*;import
io.grpc.stub.MetadataUtils;import

/**
 * Example of consuming events from Sportradar F1 service using a
blocking (synchronous) gRPC call.
 */

DocSnippetBlockingCall {public class

 String = ;private static final AUTH_TOKEN "token-from-sportradar-sso"

 /** Demonstrate streaming events from Sportradar F1 service using a
blocking gRPC call. */

streamEventsGrpcBlocking() { public void
 // Set up a network channel

ManagedChannel channel =
 ManagedChannelBuilder. (,)forAddress " "stream.ld.betradar.com 443
 .build();

 // Make metadata object containing authorization header
Metadata headers = Metadata(); new

 headers.put(Metadata.Key. (, Metadata.of AUTHORIZATION
),);ASCII_STRING_MARSHALLER AUTH_TOKEN

 // Creates the client stub (proxy for network service)
EventStreamGrpc.EventStreamBlockingStub stub =

 MetadataUtils. (EventStreamGrpc.attachHeaders newBlockingStub
(channel), headers);

 // Make the call and output resulting events continuously
ServiceProtos.EventsRequest request =

 ServiceProtos.EventsRequest. ().setStageId(newBuilder "test:stage:
).build();6538"

 stub.streamEvents(request)
 .forEachRemaining(
 response -> {
 System. .println(out
 "Got event of type "

+ response.getEventWrapper().getEventType()
 + " with id "

+ response.getEventWrapper().getId());

 // Unpack BetStartEvent proto (as example) and print
reason

(response if
 .getEventWrapper()
 .getEvent()
 .getTypeUrl()
 .equals("type.googleapis.com/sportradar.ldi.f1.

)) {services.v1.BetStartEvent"
 {try
 ServiceProtos.BetStartEvent betStart =
 response
 .getEventWrapper()
 .getEvent()
 .unpack(ServiceProtos.BetStartEvent.);class
 System. .println(+ out "Got bet start with reason: "
betStart.getReason());
 } (InvalidProtocolBufferException e) {catch
 e.printStackTrace();
 }
 }
 });
 }

 main(String[] args) {public static void
 DocSnippetBlockingCall().streamEventsGrpcBlocking();new
 }
}

http://stream.ld.betradar.com

Consuming events using a non-blocking call

The sample below shows how to make a non-blocking gRPC call to the F1 service.

package com.sportradar.livedata.integration.f1.service.snippets;

com.google.common.net.HttpHeaders. ;import static AUTHORIZATION

com.google.protobuf.InvalidProtocolBufferException;import
com.sportradar.livedata.integration.f1.services.v1.import

EventStreamGrpc;
com.sportradar.livedata.integration.f1.services.v1.ServiceProtos;import
io.grpc.*;import
io.grpc.stub.MetadataUtils;import
io.grpc.stub.StreamObserver;import

/**
 * Example of consuming events from Sportradar F1 service using a non-
blocking (asynchronous) gRPC
 * call.
 */

DocSnippetNonblockingCall {public class

 String = ;private static final AUTH_TOKEN "token-from-sportradar-sso"

 /** Demonstrate streaming events from Sportradar F1 service using a
non-blocking gRPC call. */

streamEventsGrpcNonblocking() InterruptedException public void throws
{
 // Set up a network channel

ManagedChannel channel =
 ManagedChannelBuilder. (,)forAddress " "stream.ld.betradar.com 443
 .build();

 // Make metadata object containing authorization header
Metadata headers = Metadata(); new

 headers.put(Metadata.Key. (, Metadata.of AUTHORIZATION
),);ASCII_STRING_MARSHALLER AUTH_TOKEN

 // Creates the client stub (proxy for network service)
EventStreamGrpc.EventStreamStub stub =

 MetadataUtils. (EventStreamGrpc. (channel), attachHeaders newStub
headers);

 // Make the call and output resulting events continuously
ServiceProtos.EventsRequest request =

 ServiceProtos.EventsRequest. ().setStageId(newBuilder "test:stage:
).build();6538"

 // Make the observer of responses
StreamObserver<ServiceProtos.EventResponse> observer = new

EventObserver();

 // Call service
stub.streamEvents(request, observer);

 // Sleep 10 secs while the observer handles some events
Thread. (); sleep 10000

 }

 main(String[] args) InterruptedException {public static void throws
 DocSnippetNonblockingCall().streamEventsGrpcNonblocking();new
 }

 EventObserver StreamObserver<ServiceProtos.private class implements
EventResponse> {
 @Override

onNext(ServiceProtos.EventResponse response) { public void
 System. .println(out
 "Got event of type "

+ response.getEventWrapper().getEventType()
 + " with id "

+ response.getEventWrapper().getId());

 // Unpack BetStartEvent proto (as example) and print reason
(response if

 .getEventWrapper()
 .getEvent()
 .getTypeUrl()
 .equals("type.googleapis.com/sportradar.ldi.f1.services.v1.

)) {BetStartEvent"

http://stream.ld.betradar.com

 {try
 ServiceProtos.BetStartEvent betStart =
 response.getEventWrapper().getEvent().unpack
(ServiceProtos.BetStartEvent.);class
 System. .println(+ betStart.out "Got bet start with reason: "
getReason());
 } (InvalidProtocolBufferException e) {catch
 e.printStackTrace();
 }
 }
 }

 @Override
onError(Throwable throwable) { public void

 System. .println(+ throwable);out "Got error: "
 }

 @Override
onCompleted() { public void

 System. .println();out "Done"
 }
 }
}

Back to top

	LD - F1

